首页> 外文OA文献 >Effects of excitation frequency on high-order terahertz sideband generation in semiconductors
【2h】

Effects of excitation frequency on high-order terahertz sideband generation in semiconductors

机译:激励频率对高阶太赫兹边带的影响   半导体产生

摘要

We theoretically investigate the effects of the excitation frequency on theplateau of high-order terahertz sideband generation (HSG) in semiconductorsdriven by intense terahertz (THz) fields. We find that the plateau of thesideband spectrum strongly depends on the detuning between the NIR laser fieldand the band gap. We use the quantum trajectory theory (three-step model) tounderstand the HSG. In the three-step model, an electron-hole pair is firstexcited by a weak laser, then driven by the strong THz field, and finallyrecombine to emit a photon with energy gain. When the laser is tuned below theband gap (negative detuning), the electron-hole generation is a virtual processthat requires quantum tunneling to occur. When the energy gained by theelectron-hole pair from the THz field is less than 3.2 times the ponderomotiveenergy, the electron and the hole can be driven to the same position andrecombine without quantum tunneling, so the HSG will have large probabilityamplitude. This leads to a plateau feature of the HSG spectrum with ahigh-frequency cutoff at about 3.2 times the ponderomotive energy above theband gap. Such a plateau feature is similar to the case of high-order harmonicsgeneration in atoms where electrons have to overcome the binding energy toescape the atomic core. A particularly interesting excitation condition in HSGis that the laser can be tuned above the band gap (positive detuning),corresponding to the unphysical "negative" binding energy in atoms forhigh-order harmonic generation. Now the electron-hole pair is generation byreal excitation, but the recombination process can be real or virtual dependingon the energy gained from the THz field, which determines the plateau featurein HSG.
机译:我们从理论上研究了激发频率对强太赫兹(THz)场驱动的半导体中高阶太赫兹边带生成(HSG)平台的影响。我们发现,边带频谱的平稳性很大程度上取决于NIR激光场与带隙之间的失谐。我们使用量子轨迹理论(三步模型)来理解HSG。在三步模型中,首先由弱激光激发电子-空穴对,然后由强太赫兹场驱动,最后重组以发射具有能量增益的光子。当将激光器调谐到带隙以下(负失谐)时,电子空穴的产生是一个虚拟过程,需要进行量子隧穿。当电子-空穴对从太赫兹场获得的能量小于动能的3.2倍时,电子和空穴可以被驱动到同一位置并复合,而没有量子隧穿,因此HSG的振幅幅度较大。这导致了HSG频谱的平稳特征,其高频截止频率约为带隙上方的动能的3.2倍。这种平稳的特征类似于原子中高次谐波产生的情况,其中电子必须克服结合能以逃逸原子核。 HSG中一个特别有趣的激发条件是,可以将激光器调谐到带隙之上(正失谐),这对应于原子中非物理的“负”结合能,从而可以产生高次谐波。现在,电子-空穴对是通过真实的激发产生的,但是重组过程可以是真实的也可以是虚拟的,具体取决于从THz场获得的能量,这决定了HSG的平稳特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号